Refine Your Search

Topic

Search Results

Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2011-06-20
HISTORICAL
AIR1266A
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

FAULT ISOLATION IN ENVIRONMENTAL CONTROL SYSTEMS OF COMMERCIAL TRANSPORTS

1993-06-01
HISTORICAL
AIR1266
This AIR outlines concepts for the design and use of fault isolation equipment that have general application. However, the specific concern applies only to use with Environmental Control Systems in commercial transports. In particular, automatic Built In Test Equipment (BITE) with manual initiation and software programs are covered as systems already in use.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2021-01-12
CURRENT
AIR1266B
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

Engineering Analysis System (EASY) Computer Program for Dynamic Analysis of Aircraft ECS

2003-10-31
HISTORICAL
AIR1823A
The Engineering Analysis SYstem (EASY) computer program is summarized in this report. It provides techniques for analysis of steady-state and dynamic (transient) environmental control system (ECS) performance, control system stability, and for synthesis of optimal ECS. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
Standard

ENVIRONMENTAL CONTROL SYSTEM TRANSIENT ANALYSIS COMPUTER PROGRAM (EASY)

2011-08-10
HISTORICAL
AIR1823
The Environmental Control Analysis SYstem (EASY) computer program is summarized in this report. Development of this computer program initially was sponsored by the U.S. Air Force Flight Dynamics Laboratory. (See References 1, 2, 3, and 4.) It provides techniques for determination of steady state and dynamic (transient) ECS performance, and of control system stability; and for synthesis of optimal ECS control systems. The program is available from the U.S. Air Force, or as a proprietary commercial version. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
Standard

Environmental Control System Contamination

2003-10-31
HISTORICAL
AIR1539A
This publication will be limited to a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc., are not covered in this AIR. It will cover all contamination sources which interface with ECS, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsibility of the ECS designer.
Standard

Environmental Control System Contamination

2017-06-19
HISTORICAL
AIR1539B
This publication will be limited to a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc., are not covered in this AIR. It will cover all contamination sources which interface with ECS, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsibility of the ECS designer.
Standard

ENVIRONMENTAL CONTROL SYSTEM CONTAMINATION

1981-01-30
HISTORICAL
AIR1539
This publication will be limited to a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc., are not covered in this AIR. It will cover all contamination sources which interface with ECS, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsiblity of the ECS designer.
Standard

The Control of Excess Humidity in Avionics Cooling

2003-10-31
HISTORICAL
ARP987A
The purpose of this document is threefold: (1) to review the problem of moisture in avionics equipment, (2) to outline methods for correcting conditions of excess moisture in existing avionics installations, and (3) to recommend design practices for new avionics cooling system installations which will minimize the adverse effects of moisture.
Standard

The Control of Excess Humidity in Avionics Cooling

2020-05-12
CURRENT
ARP987B
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
Standard

Environmental Control Systems Terminology

2017-06-20
CURRENT
ARP147E
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms.
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2012-12-06
HISTORICAL
ARP4014
This recommended practice describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of this test fluid is not part of this recommended practice, however, if required by applicable test specification, refer to MAP 749A.
Standard

TESTING OF PROTOTYPE AIRPLANE AIR CONDITIONING SYSTEMS

1951-03-15
HISTORICAL
ARP217
These recommendations are written to cover the testing of air conditioning equipment as installed in the prototype aircraft for the purpose of: A Demonstrating safety of the installation. B Demonstrating performance of the installation. a Aircraft ducting and distribution system. b Component parts (i.e., vendors equipment) C Obtaining data for future design.
Standard

TESTING OF COMMERCIAL AIRPLANE ENVIRONMENTAL CONTROL SYSTEMS

1997-10-01
HISTORICAL
ARP217C
These recommendations are written to cover the testing of environmental control equipment, functioning as a complete and installed system in civil aircraft for the purpose of: a Demonstrating the safety of the installation and equipment. b Demonstrating proper functioning of the installation and equipment. c Demonstrating performance of the installation and equipment. d Obtaining data for future design and to aid in the analysis of in-service performance of the system and equipment.
Standard

Testing of Airplane Installed Environmental Control Systems (ECS)

2021-12-27
CURRENT
ARP217D
This document deals with ground and flight test of airplane installed Environmental Control Systems (ECS), Figure 1. The ECS provide an environment, controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include the following: pressure, temperature, humidity, ventilation air velocity, ventilation rate, wall temperature, audible noise, vibration, and environment composition (ozone, contaminants, etc.). The ECS are composed of equipment, controls, and indicators that supply, distribute, recycle and exhaust air to maintain the desired environment.
Standard

TESTING OF COMMERCIAL AIRPLANE ENVIRONMENTAL CONTROL SYSTEMS

1973-10-15
HISTORICAL
ARP217B
These recommendations are written to cover the testing of environmental control equipment, functioning as a complete and installed system in civil aircraft for the purpose of: a Demonstrating the safety of the installation and equipment. b Demonstrating proper functioning of the installation and equipment. c Demonstrating performance of the installation and equipment. d Obtaining data for future design and to aid in the analysis of in-service performance of the system and equipment.
X